If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-5x-750=0
a = 8; b = -5; c = -750;
Δ = b2-4ac
Δ = -52-4·8·(-750)
Δ = 24025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{24025}=155$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-155}{2*8}=\frac{-150}{16} =-9+3/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+155}{2*8}=\frac{160}{16} =10 $
| 12x+92=29x-11 | | V(v^2-6v-7)=0 | | V^3+6v^2-7v=0 | | x/3=10/13 | | 576+2*32=h | | -5x+12=-12x+12 | | P=2v;2 | | 5x+12=5x-5 | | 1/8-s=500 | | p-32=25 | | x/2.8=1.9 | | 57-0.8x=25 | | 3y+11=11y | | -4/n=-90 | | 11000(x+.05)-4000=370 | | 3/x=11/33x= | | 7(x-5)-3(x+8)=23 | | -4n=-90 | | 5(x+3)^2-3=17 | | x+9=2×+5 | | 4(0.5x-3)=0.25(12-8x) | | 33x-21-9x=-97 | | 130+(x^2+5x)=180 | | 5(u-9)-7=-4(-5u+9)-9u | | 9=2y-1-2y | | 2x+90°=180 | | 4=2(x+8)-6 | | 49*2=10a | | 3t+1/2+3t-7=2t+3/5 | | 0=0.7x+1 | | 4=2(x+8)+6 | | 4=2(x+8)+16 |